Skip to main content

2025 年浙江中考第 24 题

· 2 min read
lailai
Student & Developer

求不出的 33945\frac{3\sqrt{39}-4}{5},会不会又成为后来心底的坎?

题目

24.(本题 1212 分)在菱形 ABCDABCD 中,AB=5AB=5AC=8AC=8

(1)如图 11,求 sinBAC\sin\angle BAC 的值。

(2)如图 22EEADAD 延长线上的一点,连接 BEBE,作 FBE\triangle FBEABE\triangle ABE 关于直线 BEBE 对称,EFEF 交射线 ACAC 于点 PP,连接 BPBP

① 当 EFACEF\perp AC 时,求 AEAE 的长。

② 求 PAPBPA-PB 的最小值。

建系法

AA 为原点,ABABxx 轴正方向建系,易得:

A(0,0),B(5,0),C(325,245),D(75,245)A(0,0),B(5,0),C\left(\frac{32}{5},\frac{24}{5}\right),D\left(\frac{7}{5},\frac{24}{5}\right)

因为 EEADAD 延长线上,不妨设:

E(7t5,24t5)E\left(\frac{7t}{5},\frac{24t}{5}\right)

因为 FFAA 关于 BEBE 的对称点,所以:

F=2[B+(AB)(EB)EB2(EB)]A=(1152t25(25t214t+25),48t(257t)5(25t214t+25))F=2\left[B+\frac{(A-B)\cdot(E-B)}{\lVert E-B\rVert^{2}}(E-B)\right]-A=\left( \frac{1152t^{2}}{5(25t^{2}-14t+25)}, \frac{48t(25-7t)}{5(25t^{2}-14t+25)} \right)

因为 PPACACEFEF 的交点,所以:

P(64t(25t7)5(25t2+50t39),48t(25t7)5(25t2+50t39))P\left(\frac{64t(25t-7)}{5(25t^{2}+50t-39)},\frac{48t(25t-7)}{5(25t^{2}+50t-39)} \right)

令:

f(t)=APBP=16t(25t7)3(25t214t+25)(425t2494t+169)25t2+50t39f(t)=AP-BP=\frac{16t(25t-7)-3\sqrt{(25t^{2}-14t+25)(425t^{2}-494t+169)}}{25t^{2}+50t-39}

求导:

f(t)=(800t1123[(50t14)(425t2494t+169)+(25t214t+25)(850t494)]2(25t214t+25)(425t2494t+169))(25t2+50t39)(400t2112t3(25t214t+25)(425t2494t+169))(50t+50)(25t2+50t39)2f'(t)= \frac{ \left( 800t-112-\frac{3\left[(50t-14)(425t^{2}-494t+169)+(25t^{2}-14t+25)(850t-494)\right]} {2\sqrt{(25t^{2}-14t+25)(425t^{2}-494t+169)}} \right)(25t^{2}+50t-39)- \left( 400t^{2}-112t-3\sqrt{(25t^{2}-14t+25)(425t^{2}-494t+169)} \right)(50t+50)} {\left(25t^{2}+50t-39\right)^{2}}

f(t)=0f'(t)=0

475t2650t+91=0475t^2-650t+91=0

求解:

t1=65839950.1583,t2=65+839951.2101t_1=\frac{65-8\sqrt{39}}{95}\approx 0.1583,t_2=\frac{65+8\sqrt{39}}{95}\approx 1.2101

代入 f(t)f(t)

f(t1)=4433955.0530,f(t2)=339452.9470f(t_1)=\frac{44-3\sqrt{39}}{5}\approx 5.0530,f(t_2)=\frac{3\sqrt{39}-4}{5}\approx 2.9470

所以 APBPAP-BP 最小值为:

(APBP)min=339452.9470(AP-BP)_{\min}=\frac{3\sqrt{39}-4}{5}\approx 2.9470